Prepared by

Marsha Lillie-Blanton, Osula Evadne Rushing and Sonia Ruiz of The Henry J. Kaiser Family Foundation and Robert Mayberry and Leslie Boone of the Morehouse School of Medicine.
Racial/Ethnic Differences in Cardiac Care: The Weight of the Evidence

October 2002
ACKNOWLEDGEMENTS

The Henry J Kaiser Family Foundation and the American College of Cardiology Foundation (ACCF) would like to express our appreciation to the many individuals who made this report possible.

We are especially grateful to Nicole Lurie, MD, professor at the RAND Corporation and a consultant to the Foundation’s initiative to engage physicians in dialogue about disparities in medical care; she conceptually guided the review process and challenged us to decisively summarize our findings.

Special thanks are also due to report co-authors Robert Mayberry, MPH, PhD and Leslie Boone, MPH, of the Morehouse School of Medicine, and to advisory committee members: A Seiji Hayashi, MD of Unity Health Care; Nancy Kressin, PhD of the Bedford VA Medical Center; Elizabeth Ofili, MD, FACC, of the Association of Black Cardiologists; Eugene Passamani, MD, FACC of Suburban Hospital; and Michele Orza, ScD and Cary Sennett, MD, PhD, of the American College of Cardiology Foundation. They were instrumental in developing the framework for this review and in providing critiques of early drafts of this report. We also gratefully acknowledge the support and advice of: Carolyn Clancy, MD of the Agency for Healthcare Research and Quality; Diane Rowland, ScD and Catherine Hoffman, ScD of the Kaiser Family Foundation; and John Z Ayanian, MD of Harvard Medical School. Consultant Paula Grant, JD, also deserves recognition for her key editorial contributions throughout the review process. In addition, many others were helpful in providing administrative and technical assistance including Kinite Holt, Courtney Rees, Ardine Hockaday, and Chris Redwood.

Finally, we wish to thank the ACCF Fellows John G Canto, MD, MSPH, FACC, Arthur Garson, Jr, MD, MPH, MACC, George A Mensah, MD, FACP, FACC, Eric D Peterson, MD, MPH, FACC, and William S Weintraub, MD, FACC, FAHA as well as ACCF staff Mary Anne Elma, Frances Fiocchi, Kristi Mitchell, and Paula Thompson for their review of this report in draft form. Responsibility for the final content of this report rests entirely with its authors.
CONTENTS

EXECUTIVE SUMMARY ... 1

INTRODUCTION ... 3

REVIEW STRATEGY ... 3

SUMMARY OF FINDINGS ... 5

DISCUSSION ... 14

CITATIONS IN TEXT .. 15

ABBREVIATIONS AND ACRONYMS ... 16

APPENDICES

A. At-A-Glance Findings of All Studies ... 17

B. Review Strategy* ... 25
B.1 Advisory Committee ... 27
B.2 Detailed Search Strategy .. 28
B.3 Criteria for Study Inclusion/Exclusion 29
B.4 Explanatory Studies ... 30
B.5 Sample Data Abstraction Form .. 31
B.6 Definition of Odds and Odds Ratio ... 32

C. Detailed Study Findings Organized by Procedure or Treatment* .. 33
C.1 Table 1: Diagnostic Procedures (Cardiac Catheterization and Angiography) 35
C.2 Table 2: Revascularization Procedures (CABG, PTCA, and Any Revascularization) 39
C.3 Table 3: Thrombolytic Therapy .. 47
C.4 Table 4: Drug Therapy .. 49
C.5 Table 5: Other Cardiac Procedures and Treatments .. 52
C.6 Key .. 54

D. References* ... 55

*Included in full report only
Coronary heart disease is the leading cause of death among every racial and ethnic group in the United States. An individual’s ability to access and use modern cardiac therapy and procedures may have profound implications for improving diagnostic precision, relieving symptoms, and reducing premature mortality from heart-related conditions (Bernstein et al., 1993; Hillborne et al., 1991; Leape et al., 1991). Numerous studies over the past two decades have documented racial and ethnic differences in use of cardiac care. This review focuses on the most methodologically rigorous studies with the intent of addressing perceptions that reported differentials in care reflect unmeasured clinical and socioeconomic factors (Epstein & Ayanian, 2001; Kaiser Family Foundation, 2002).

Eighty-one studies were included in this review. Though both physicians and researchers have questioned the quality of the research on racial/ethnic differences in medical care, we classified more than half of the studies as methodologically strong, largely based on how well they measured and controlled for appropriateness of care and other factors known to be associated with medical care use.

Sixty-eight of the 81 studies found racial/ethnic differences in cardiac care for at least one of the minority groups under study. Of the 68, 46 found differences in cardiac care for all of the procedures and treatments investigated, and 22 found differences in cardiac care for some procedures and treatments and not others. The 13 remaining studies included 11 that found no racial/ethnic differences in cardiac care, and two that found the minority group more likely than whites to receive appropriate care. Figures 4a–8a present the main finding (i.e., whether a study found a statistically significant racial/ethnic difference in cardiac care) of each of the 81 studies included in this review.

The strong studies in this review provide credible evidence that African Americans are less likely than white Americans to receive diagnostic procedures, revascularization procedures and thrombolytic therapy, even when patient characteristics are similar. Figures 4b–7b display odds ratios (ORs) from these studies. Evidence of racial/ethnic disparities in drug therapy and other cardiac treatments, such as care for congestive heart failure, is mixed. Data on Latinos, Asians, and Native Americans is limited and the evidence is less conclusive than that for African Americans.

This review also found that, in general, disparities in receipt of appropriate care remain after adjusting for factors known to affect care such as age, sex, insurance status, co-morbidities, and heart disease severity. Documented disparities persist among patients already in the health care system and with similar health insurance status, suggesting that the patterns observed are not the “typical” problems of health care access such as not having a source of medical care, or being uninsured. Although bias and discrimination are often cited as factors that may be responsible for health care disparities, that conclusion cannot be drawn from the studies examined in this report. There is an abundance of evidence that racial/ethnic variations in medical care are infinitely more complex (IOM, 2002).

Research to investigate underlying causes, subsequent outcomes and effective interventions is an important next step in efforts to reduce racial/ethnic disparities in medical care. However this research should not delay the uniform application of proven guidelines for optimal cardiac care without regard to race or ethnicity; nor should it delay efforts to address known barriers to health care access, such as lack of insurance coverage.

It is likely that a mix of patient, provider, and health system factors contribute to disparities in care. Physicians are often in a position to impact these factors. They therefore play an important role in efforts to understand why disparities occur and in implementing strategies that seek to assure the highest quality medical care for every individual.
INTRODUCTION

As a first step in a multifaceted effort, The Henry J. Kaiser Family Foundation (KFF) has launched an initiative to raise awareness among physicians about racial and ethnic disparities in medical care. The initial focus is on cardiac care because heart disease is the leading cause of death among racial/ethnic groups in the United States and because there is substantial research on disparities in this area.

As a part of this initiative, the American College of Cardiology Foundation (ACCF) agreed to participate in a process that would systematically review the evidence on racial/ethnic differences in cardiac care. The objectives of this process were: 1) to assess the extent to which there is credible evidence of racial and ethnic differences in cardiac care, after controlling for confounding factors known to explain variations in medical care; and 2) to summarize the research findings in a way that makes the information easily accessible to a physician audience.

Although previous reviews of the literature provide compelling evidence of racial/ethnic differences in cardiac care (Ford and Cooper, 1995; Mayberry et al., 2000; Sheifer et al., 2000; Kressin and Petersen, 2001), some clinicians continue to question whether studies have adequately adjusted for clinical and socioeconomic factors that might explain racial/ethnic variations in care (Epstein & Ayanian, 2001; Kaiser Family Foundation, 2002; Barnhart and Wassertheil-Smaller, 2002; Koroukian, 2002).

This review, therefore, focuses on evidence from studies considered the most methodologically rigorous, a classification made by two independent review teams using a uniform set of criteria to determine how well a study measured and controlled for critical confounding variables. This review also examines findings separately for specific cardiac interventions, allowing conclusions to be drawn separately for each.

Though a systematic assessment of the health outcomes related to racial/ethnic differences in cardiac care is important to undertake, it was beyond the scope of this effort.

REVIEW STRATEGY

An advisory committee that included representatives of the American College of Cardiology Foundation and the Association of Black Cardiologists guided the framework for this review of the evidence (see Appendix B.1). Two teams of researchers/analysts, one from the Kaiser Family Foundation and the other from the Morehouse School of Medicine (MSM), had responsibility for independently reviewing the studies.

The research team searched the MEDLINE database to find studies conducted in the United States and published in peer-reviewed journals from January 1985 to October 2001 (see Appendix B.2). The year 1985 was chosen to coincide with the report of the DHHS Secretary’s Task Force on Black and Minority Health. The research team supplemented the search with previously published bibliographic sources from review articles. One study (Oberman & Cutter, 1984) published before 1985 was identified through the latter process and was included in the review. The intent of the literature search was to retrieve all studies related to racial/ethnic differences in access and quality of care for invasive, diagnostic or therapeutic cardiac care.

The committee developed criteria for studies that would be included in this review (see Appendix B.3). Studies selected for inclusion into the body of evidence were those that (1) were conducted primarily in the United States, (2) indicated that a primary purpose was to study racial or ethnic differences in cardiac care, (3) reported original findings, (4) presented actual quantitative and comparative data, and (5) identified specific ethnic or racial groups for comparison to whites or other
racial/ethnic groups. The teams uniformly applied the criteria to all studies. Seventy-seven of the 158 articles produced from the search were excluded. The 81 studies that met the inclusion criteria were then abstracted and evaluated during the review process. (Note: A number of studies examined specific hypotheses to explain racial/ethnic differences in cardiac care observed in previous research. These explanatory studies were excluded from our review, but are listed in Appendix B.4).

The 81 studies included in the review were categorized based on their use of administrative or clinical data. Studies based on administrative data described their data sources as discharge or claims data. Studies based on clinical data included additional personal medical record information, derived from registries, clinical databases or medical charts. If a study analyzed both administrative and clinical data, it was classified as a study based on clinical data.

The teams used an abstraction form to assure consistency in the information obtained from each study (see Appendix B.5). The KFF and MSM teams independently reviewed the studies, completed the abstraction forms and evaluated the strength of the evidence provided by each study. A study was classified as “strong” or “less strong” by criteria agreed upon by the committee (see Figure 1). Strong studies had well-defined parameters, internal validity, and measured and controlled for critical variables. (For example, a strong study based on clinical data would have controlled for age, insurance status, co-morbidities, and severity of heart disease—using a recognized measure such as Killip class or RAND appropriateness criteria—and would have used multivariate analysis to adjust for these variables simultaneously.) Less strong studies did not control for critical variables, or had design flaws that potentially undermined the validity of the evidence.

Most of the studies analyzed data on more than one cardiac procedure or treatment. The committee decided to present and analyze information separately for diagnostic procedures, revascularization procedures, thrombolytic therapy, drug therapy, and other cardiac procedures. As such, an individual study may appear in more than one table, figure, or discussion section.
SUMMARY OF FINDINGS

A total of 81 studies ultimately comprised the body of evidence for this review. The majority (n=53) of the studies included recent data (collected between 1991 and 2001), a large number (n=54) compared only African Americans and whites, and most (n=51) analyzed clinical data (see Figure 2).

Sixty-eight of the 81 studies found differences in cardiac care for at least one of the racial/ethnic minority groups under study. Of the 68, 46 found differences in cardiac care for all of the procedures and treatments investigated, and 22 found differences in cardiac care for some procedures and treatments and not others. The 13 remaining studies included 11 that found no racial/ethnic differences in cardiac care1, and two studies of congestive heart failure that found the racial/ethnic minority group less likely to be hospitalized than whites, indicating better access to appropriate care2.

Most of the studies investigated more than one procedure and/or treatment. Of the 81 studies, 41 included data on diagnostic procedures, 63 included data on revascularization, 14 included data on thrombolytic therapy, 11 included data on drug therapy, and 9 included data on other cardiac procedures and

Figure 2

Studies Investigating Racial/Ethnic Differences in Cardiac Care, 1984–2001

<table>
<thead>
<tr>
<th>Data Years a,b</th>
<th>Pre-1990</th>
<th>1991–2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative</td>
<td>30</td>
<td>51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Racial/Ethnic Groups Studied b</th>
<th>White + African Americans only</th>
<th>African Americans</th>
<th>Latinos</th>
<th>Asians</th>
<th>Native Americans</th>
<th>Summary groupings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>54</td>
<td>74</td>
<td>21</td>
<td>11</td>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>

1 The 11 studies that found no racial/ethnic difference in cardiac care were Bearden et al., 1994; Carlisle et al., 1999; Davis et al., 2001; Gillum et al., 1997 [a]; Griffiths et al., 1999; Laouri et al., 1997 [a]; Leape et al., 1999; Marks et al., 2000; Peniston et al., 2000; Taylor et al., 1997; and Watson et al., 2001.

2 The two studies that found the racial/ethnic minority group less likely than whites to be hospitalized were Bourassa et al., 1993 and Wolinsky et al., 1997.
treatments resulting in a total of 138 separate analyses. While the majority (72 of 138) of these analyses were classified as strong methodologically, slightly less than half of the analyses based on clinical data (38 of 87) were classified as strong (see Figure 3).

Diagnostic Procedures

Twenty-four of the 41 studies of cardiac catheterization and angiography rates were classified as strong (see Appendix C.1). Of the 24, 19 studies found that at least one racial/ethnic minority group was less likely to undergo cardiac catheterization or angiography than whites even when age, insurance, co-morbidities and/or disease severity were taken into account (see Figure 4a).

African Americans were less likely than whites to undergo catheterization or angiography in 15 of the 20 strong studies that calculated odds ratios to compare use of diagnostic tests (the statistically significant ORs ranged from 0.23 to 0.85; Figure 4b).³

³The studies in which the odds of a cardiac diagnostic test did not statistically differ between African Americans and whites were Carlisle et al., 1995; Laouri et al.[a], 1997; Maynard et al., 1997; and Mickelson et al., 1997. Carlisle, et al., 1997 found that African Americans were less likely than whites to undergo catheterization if they were HMO patients or uninsured, but not if they had private insurance, Medicaid, or Medicare.
Figure 4b
Odds Ratios for Selected Strong Studies:
Diagnostic Procedures (African Americans/Whites)

Carlisle et al. * 1995
Carlisle et al. * 1997
 Private insurance
 HMO
 Medicaid
 Medicare
 No insurance
Daumit et al.* 1999 $
Escaré et al.* 1993 $
Ferguson et al. 1998 $
 Received CC
 Ford et al.* 2000
 Franks et al.* 1993
 Men
 Women
Gregory et al.* 1999
 <65
 >65
Hannan et al.* 1991 $
Laouri et al. 1997 [a]
 3 months post stress test a
 12 months post stress test b
Maynard et al.* 1997 $
Mickelson et al.* 1997
Mirvis et al.* 1994 $
 Among CAD pts
 Among VHD pts
Peterson et al.* 1994
Philbin et al.* 2000
Philbin et al.* 2001
Taylor et al.* 1998 $
Udvarhelyi et al.* 1992 c
Wenneker and Epstein* 1989 $
Whittle et al.* 1993 $

*a Study analyzes more than one procedure or treatment and appears in more than one table.
[1] Odds ratio: AAW 1.05 (0.54–2.06).
[2] Odds ratio: AAW 1.24 (0.64–2.40).
[c] The authors computed relative risks, which are comparable to odds ratios when the events are rare. Both measure the strength of an association between a factor and an outcome.

NOTE: Studies selected for this figure were all strong studies that used odds ratios for analyzing statistical differences between African Americans and whites. An odds ratio of 1.0 means there is an equal likelihood of receiving the procedure or treatment. An odds ratio of <1.0 means African Americans are less likely to receive the procedure or treatment.
Revascularization

The body of evidence on racial/ethnic differences in cardiac care is most extensive for revascularization (see Appendix C.2). Nearly 80 percent (63 of 81) of the studies in this review analyzed revascularization rates. Of the 63 studies analyzing revascularization rates, 38 included data on PTCA, 44 included data on CABG, and 29 included data on “any revascularization procedure.”

PTCA

Twenty-three of the 38 studies of PTCA rates were classified as strong. Of the 23, 19 studies found that at least one racial/ethnic minority group was less likely to undergo PTCA than whites, even after adjustments for age, insurance, co-morbidities, and/or disease severity (Figure 5a).

African Americans were less likely than whites to undergo PTCA in 13 of the 20 strong studies that calculated odds ratios to compare PTCA use (the statistically significant ORs ranged from 0.20 to 0.80; Figure 5b).4

4 The studies in which the odds of a PTCA did not statistically differ between African Americans and whites were Okelo et al., 2001; Peterson et al., 1997; Philbin et al., 2001; Taylor et al., 1998; and Wenneker and Epstein, 1989. Carlisle et al., 1997 found a difference among HMO, Medicare and uninsured patients, but not among privately insured or Medicaid patients. Conigliaro et al., 2000 found a difference when PTCA was equivocal, but not when necessary or when CABG or PTCA were necessary.
Figure 5b
Odds Ratios for Selected Strong Studies:
PTCA (African Americans/Whites)

Ayanian et al. 1993
Carlisle et al. 1995
Carlisle et al. 1997
Private insurance
HMO
Medicaid
Medicare
No insurance
Conigliaro et al. 2000
When equivocal
When necessary
CABG or PTCA necessary
Daumit et al. 1999
Escarce et al. 1993
Among angiography patients
Ford et al. 2000
Giacomini 1996
Hannan et al. 1991
Laouri et al. 1997
Maynard et al. 1997
Okello et al. 2001
Peterson et al. 1994
Among angiography patients
Peterson et al. 1997
Philbin et al. 2000
Philbin et al. 2001
Taylor et al. 1998
Primary (Immediate)
Udvarhelyi et al. 1992
Among angiography patients
Wenneker and Epstein 1989
Whittle et al. 1993

* Study analyzes more than one procedure or treatment and appears in more than one table.
† Odds ratio findings taken from Kressin and Peterson. Annals of Internal Medicine, 2001.
‡ Odds ratio: AAAW 4.50 (0.91-22.29).
§ Odds ratio: AAAW 1.42 (0.96-2.11).
The authors computed relative risks, which are comparable to odds ratios when the events are rare. Both measure the strength of an association between a factor and an outcome.

NOTE: Studies selected for this figure were all strong studies that used odds ratios for analyzing statistical differences between African Americans and whites. An odds ratio of 1.0 means there is an equal likelihood of receiving the procedure or treatment. An odds ratio of < 1.0 means African Americans are less likely to receive the procedure or treatment.
Any Revascularization Procedures

The review also included 29 studies that investigated racial/ethnic differences in combined cardiac procedures. Thirteen of the 17 strong studies that investigated various combinations of cardiac catheterization, PTCA, CABG and thrombolytic therapy found African Americans less likely than whites to undergo the procedures under study.

CABG

Twenty-six of the 44 studies of CABG rates were classified as strong. Of the 26, 24 studies found that at least one racial/ethnic minority group was less likely to undergo CABG than whites, even after adjustments for age, insurance, co-morbidities and/or disease severity (Figure 6a).

African Americans were less likely than whites to undergo CABG in 21 of the 23 strong studies that calculated odds ratios to compare CABG use (the statistically significant ORs ranged from 0.26 to 0.99; Figure 6b).

5 Carlisle et al., 1997 found a difference among HMO, Medicare, Medicaid, and uninsured patients, but not among privately insured patients. Conigliaro et al., 2000 found a difference when CABG was necessary, but not when CABG or PTCA was necessary.
Figure 6b
Odds Ratios for Selected Strong Studies: CABG (African Americans/Whites)

Ayanian et al. 1993
Carlisle et al. 1995
Carlisle et al. 1997
Private insurance
HMO
Medicaid
Medicare
No insurance
Conigliaro et al. 2000
When necessary
CABG or PTCA necessary
Daumit et al. 1999
Escarce et al. 1993
Among angiography patients
Ford et al. 2000
Giacomini 1996
Hannan et al. 1999
Hannan et al. 1991
Laouri et al. 1997
Maynard et al. 1986
Of those patients recommended
Maynard et al. 1997
Oberman and Cutter 1984
Among patients with 3-vessel disease
Okelo et al. 2001
Peterson et al. 1994
Among angiography pts
Peterson et al. 1997
Philbin et al. 2000
Philbin et al. 2001
Taylor et al. 1998
Udvarhelyi et al. 1992
Among angiography pts
Wenneker and Epstein 1989
Whittle et al. 1993

* Study analyzes more than one procedure or treatment and appears in more than one table.
† Odds ratio findings taken from Kressin and Petersen. Annals of Internal Medicine, 2001.
‡ Odds Ratio: 2.26 (0.42-12.11).
§ The authors computed relative risks, which are comparable to odds ratios when the events are rare. Both measure the strength of an association between a factor and an outcome.

NOTE: Studies selected for this figure were all strong studies that used odds ratios for analyzing statistical differences between African Americans and Whites. An odds ratio of 1.0 means there is an equal likelihood of receiving the procedure or treatment. An odds ratio of < 1.0 means African Americans are less likely to receive the procedure or treatment.
Thrombolytic Therapy

Five of the 14 studies of thrombolytic therapy (see Appendix C.3) were classified as strong. Of the five, four studies found that at least one racial/ethnic minority group was less likely than whites to receive thrombolytic therapy, even after controlling for age, insurance, co-morbidities and/or disease severity (see Figure 7a).

Figure 7a

![Bar graph showing evidence of racial/ethnic differences in thrombolytic therapy rates, with bars indicating the number of studies for each category.]

- Found all minority groups as likely to receive thrombolytic therapy
- Found at least one minority group less likely to receive thrombolytic therapy

Figure 7b
Odds Ratios for Selected Strong Studies: Thrombolytic Therapy (African Americans/Whites)

![Odds ratio graph comparing African Americans to whites for selected studies.]

<table>
<thead>
<tr>
<th>Study</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allison et al.*1996</td>
<td>0.64</td>
</tr>
<tr>
<td>Mickelson et al.*1997</td>
<td>0.76</td>
</tr>
<tr>
<td>Taylor et al.*1998</td>
<td>0.62</td>
</tr>
</tbody>
</table>

* Study analyzes more than one procedure or treatment and appears in more than one table.

NOTE: Studies selected for this figure were all strong studies that used odds ratios for analyzing statistical differences between African Americans and whites. An odds ratio of 1.0 means there is an equal likelihood of receiving the procedure or treatment. An odds ratio of < 1.0 means African Americans are less likely to receive the procedure or treatment.

African Americans were less likely than whites to receive thrombolytic therapy in two of the three strong studies that calculated odds ratios to compare procedure use (the statistically significant ORs ranged from 0.51 to 0.76; Figure 7b).

*The study in which the odds of thrombolytic therapy did not statistically differ by race was Mickelson et al., 1997.
Drug Therapy

Eleven studies included data on the use of one or more of the following drug therapies for treatment and management of cardiac care: ACE inhibitors, antiarrhythmics, anticoagulants, aspirin, β blockers, calcium channel blockers, Coumadin, digoxin, heparin, lidocaine, lipid lowering drugs, long acting nitrates and nitroglycerin. The most common drug therapies studied were aspirin and β blockers. Three of the four strong studies found that African Americans were less likely to receive at least one of the following drug therapies: aspirin and β blockers (on admission and at discharge), Heparin, and Lidocaine (Figure 8a).

Other Cardiac Procedures and Treatments

The review also identified nine studies that report on racial/ethnic differences in procedures or treatments other than those presented in Appendices C.1 – C.4 (see Appendix C.5). Five of the studies investigated care for congestive heart failure (CHF), two studies compared heart transplantation rates, and two assessed the care of patients with chest pain.

It is worth noting that there is evidence from two of the three strong studies that African Americans were less likely than whites to get quality care for CHF. However, these two studies essentially measured different phases of care. While one study assessed the care of patients hospitalized for CHF, the other assessed the likelihood of hospitalization for CHF. The first study, therefore, is an indicator of hospital care, while the latter study is largely an indicator of the adequacy of outpatient care.
The Body of Evidence on Latinos, Asians, and Native Americans

Most of the research on racial/ethnic differences in cardiac care has compared African Americans to whites. Of the 81 studies in this review, 21 included data on Latinos, 11 included data on Asians and four included data on Native Americans. The nine strong studies with data on Latinos provided mixed evidence, with half finding Latinos less likely than whites to undergo cardiac procedures and treatments and half finding no difference between Latinos and whites. The five strong studies with data on Asians more consistently suggested that Asians are as likely as whites to undergo cardiac procedures and treatments. Only one strong study included data on Native Americans.

DISCUSSION

Research conducted over the past two decades provides credible evidence of racial/ethnic disparities in cardiac care. Although many of the studies included in this review have limitations inherent in the use of an observational study design, the stronger studies controlled for confounding factors in a manner consistent with general standards of health services research.

African Americans have been more frequently studied than other racial and ethnic minority groups, and evidence that African Americans are less likely than whites to undergo invasive diagnostic tests, revascularization, and thrombolytic therapy is the most consistent. The body of evidence for Latinos, Asians, and Native Americans is limited and less conclusive for the procedures and treatments included in this review.

Evidence that disparities remain after controlling for clinical and socioeconomic factors raises questions for many in the medical community who are concerned that the race/ethnicity of a patient could, in and of itself, be prompting differences in physician behavior. Although bias and discrimination are often cited as factors that may be responsible for health care disparities, that conclusion cannot be drawn from the studies examined in this report. There is an abundance of evidence that racial/ethnic variations in medical care are infinitely more complex (IOM, 2002), as are geographic and gender variations in care.

First, race/ethnicity is intertwined with many dimensions of life in the United States. As such, the association between race/ethnicity and cardiac care may be capturing any number of race-associated factors that will need to be disentangled through more refined measurement tools and the use of sophisticated analytic techniques. Some might argue that even the studies identified as strong did not measure well social factors that may be related to race, such as accessibility of high-tech health care and specialists or patient preferences for invasive procedures. Measuring and analyzing factors such as these are important and challenging elements of a research agenda on disparities.

Second, the influence of race/ethnicity on receipt of cardiac care may vary depending on any number of circumstances. In this review, the existence and strength of an association varied within single studies by insurance coverage (Carlisle et al., 1997), by gender (Daumit and Powe, 2000), and by level of certainty about need (Conigliario et al., 2000). Also, findings observed in specific health care systems (Taylor et al., 1997) or geographic areas (Ayanian et al., 1999) are not necessarily generalizable to other settings. Variations in findings such as these, however, are not reason to dismiss the large body of evidence showing an association between race/ethnicity and cardiac care.

Research to investigate underlying causes, subsequent health outcomes, and effective interventions is an important next step in efforts to reduce racial/ethnic disparities in medical care. In addition, more research is needed to provide
definitive information on the use of cardiac services by Latinos, Asians and Native Americans. However, this research should not delay the uniform application of proven guidelines for optimal cardiac care without regard to race or ethnicity; nor should it delay efforts to address known barriers to health care access, such as lack of insurance coverage.

It is likely that a mix of patient, provider, and health system factors contribute to disparities in care. Some of these factors may be beyond the control of the physician, such as the varying scope of insurance benefits, patient preferences, or the availability of high-tech cardiac equipment in hospitals used most often by people of color. However, other factors may be more directly within the physician’s control, such as patient-provider communication, practice location decisions, or biases in the diagnostic or referral process. Physicians, therefore, play an important role in efforts to understand why disparities occur and in implementing strategies that seek to assure the highest quality medical care for every individual.

CITATIONS IN TEXT

ABBREVIATIONS AND ACRONYMS

A: Asian
AA: African American
AL: Alabama
AMI: Acute Myocardial Infarction
CA: California
CABG: Coronary Artery Bypass Grafting
CAD: Coronary Artery Disease
CASS: Coronary Artery Surgery Study
CC: Cardiac Catheterization
CHD: Coronary Heart Disease
CHF: Congestive Heart Failure
DOD: Department of Defense
Dr(s): Doctor(s)
DVA: Department of Veteran’s Affairs
ED(s): Emergency Department(s)
EKG or ECG: Electrocardiogram
ESRD: End Stage Renal Disease
HLA: Human Leukocyte Antigens
HMO: Health Maintenance Organization
HR: Hazard Ratio
HTx: Heart Transplantation
ICD-9: International Classification of Diseases
IHD: Ischemic Heart Disease
IL: Illinois
L: Latino
LA: Los Angeles
MA: Massachusetts
MD: Maryland
MI: Myocardial Infarction
MN: Minnesota
MO: Missouri
MS: Mississippi
NA: Native American
NACI: New Approaches in Coronary Interventions Registry
NC: North Carolina
NJ: New Jersey
NS: Not Significant
NY: New York
OH: Ohio
OR: Odds Ratio*
PA: Pennsylvania
PR: Prevalence Ratio
Pt(s): Patient(s)
PTCA: Percutaneous Transluminal Coronary Angioplasty
QMI: Q-wave Myocardial Infarction
SES: Socioeconomic status
SG: Data analyzed for summary racial/ethnic groups (e.g., “nonwhites”)
SHEP: Systolic Hypertension in the Elderly Program
TX: Texas
VAMC: Veteran’s Affairs Medical Centers
VHD: Valvular Heart Disease
W: White
WA: Washington

*An odds ratio is a comparative measure of the strength of an association between an exposure or treatment and an outcome event (e.g., a diagnostic test) for two population groups. It is calculated by dividing the odds of the event occurring in one population group by the odds of that event occurring in another group. In this report, the odds ratio measures the relative odds that a racial/ethnic minority population group will undergo a procedure or treatment compared with the odds for a white population group. See Appendix B.6 for a more detailed explanation of odds. [Odds ratio definition adapted from the glossary of the Institute of Medicine report Care Without Coverage: Too Little, Too Late. National Academy Press, 2002.]
APPENDIX A

AT-A-GLANCE FINDINGS OF ALL STUDIES
At-A-Glance Findings of All Studies

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Description</th>
<th>W</th>
<th>AA</th>
<th>L</th>
<th>A</th>
<th>NA</th>
<th>SG</th>
<th>Insurance</th>
<th>SES</th>
<th>Health Status</th>
<th>Heart Disease Severity</th>
<th>Rating</th>
<th>Did Study Find A Racial/Ethnic Difference in Rates?</th>
<th>CC</th>
<th>PTCA</th>
<th>CABG</th>
<th>Any Revascularization</th>
<th>Thrombolytic Therapy</th>
<th>Drug Therapy</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexander et al.</td>
<td>1999</td>
<td>All 90,316 pts admitted to all CA hospitals except VAMC or DOD with CHF, 1991-1992</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strong (admin)</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allison et al.</td>
<td>1996</td>
<td>4,052 Medicare pts with AMI in AL</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strong (clinical)</td>
<td></td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ayanian et al.</td>
<td>1993</td>
<td>27,485 Medicare pts aged 65-74 post angiography</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strong (admin)</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ayanian et al.</td>
<td>1999</td>
<td>2,175 Medicare pts with CHF in IL, NY, PA</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Strong (admin)</td>
<td></td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barnhart et al.</td>
<td>2000</td>
<td>797 pts who underwent coronary angiography for the first time, primarily for the evaluation of IHD</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Less strong (clinical)</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bearden et al.</td>
<td>1994</td>
<td>432 cases of CHD among 4,736 subjects in SHEP study</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Less strong (clinical)</td>
<td></td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bell and Hudson</td>
<td>2001</td>
<td>379 pts from 2 county EDs in NC</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Less strong (clinical)</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blustein et al.</td>
<td>1995</td>
<td>5,857 pts with diagnosis of AMI, <65 years old, non-Medicare, California</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Less strong (admin)</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borzak et al.</td>
<td>1999</td>
<td>1,948 pts admitted with AMI to single coronary unit in MI</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Less strong (admin)</td>
<td></td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bourassa et al.</td>
<td>1993</td>
<td>6,273 pts with heart failure and/or left ventricular dysfunction enrolled in the SOLVD registry</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Less strong (admin)</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canto et al.</td>
<td>1998</td>
<td>275,046 pts in National Registry of MI</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Strong (clinical)</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canto et al.</td>
<td>2000</td>
<td>26,575 Medicare pts with AMI who met eligibility criteria for reperfusion therapy, 65-80</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strong (clinical)</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carlisle et al.</td>
<td>1995</td>
<td>131,408 discharged from L.A. county hospitals</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Strong (admin)</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carlisle et al.</td>
<td>1997</td>
<td>104,952 L.A. County residents with possible CAD</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Strong (admin)</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carlisle et al.</td>
<td>1999</td>
<td>356 Los Angeles ED pts with new on-set chest pain not due to MI</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Less strong (clinical)</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen et al.</td>
<td>2001</td>
<td>39,715 Medicare pts hospitalized for AMI</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strong (clinical)</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conigliaro et al.</td>
<td>2000</td>
<td>666 male pts from 6 DVA medical centers who had undergone left heart CC, admitted for AMI or unstable angina</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strong (clinical)</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daumit and Powe</td>
<td>2001</td>
<td>4,987 pts who gained Medicare insurance after ESRD diagnosis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Strong (clinical)</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author</td>
<td>Year</td>
<td>Study population</td>
<td>Key Variables Assessed</td>
<td>Study Design</td>
<td>Did Study Find A Racial/Ethnic Difference in Rates?</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>--------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Daumit et al.</td>
<td>1999</td>
<td>4,987 adult pts with new on-set ESRD from 303 dialysis facilities</td>
<td>x x x x x x</td>
<td>x x x x x x</td>
<td>Yes, Yes, Yes, Yes</td>
<td></td>
</tr>
<tr>
<td>Davis et al.</td>
<td>2001</td>
<td>176 pts with AMI on EKG when thrombolysis was first treatment</td>
<td>x x</td>
<td>x x x x x x</td>
<td>Less strong (clinical)</td>
<td></td>
</tr>
<tr>
<td>Eggers and Greenberg</td>
<td>2000</td>
<td>All Medicare beneficiaries hospitalized in 1998</td>
<td>x x x x x x</td>
<td>x x x x x x</td>
<td>Strong (admin)</td>
<td></td>
</tr>
<tr>
<td>Escarce et al.</td>
<td>1993</td>
<td>1,204,022 Medicare pts</td>
<td>x x x x x x</td>
<td>x x x x x x</td>
<td>Strong (admin)</td>
<td></td>
</tr>
<tr>
<td>Ferguson et al.</td>
<td>1997</td>
<td>1,406 male pts from VAMC with cardiovascular disease</td>
<td>x x x x x x</td>
<td>x x x x x x</td>
<td>Strong (admin)</td>
<td></td>
</tr>
<tr>
<td>Ferguson et al.</td>
<td>1998</td>
<td>200 men, Roundhouse VA Medical Center, Indianapolis, ID</td>
<td>x x x x x x</td>
<td>x x x x x x</td>
<td>Strong (admin)</td>
<td></td>
</tr>
<tr>
<td>Ford et al.</td>
<td>1989</td>
<td>All pts ages 35-74 with discharge of AMI from U.S. hospitals, 1974-84</td>
<td>x x x x x x</td>
<td>x x x x x x</td>
<td>Strong (admin)</td>
<td></td>
</tr>
<tr>
<td>Ford et al.</td>
<td>2000</td>
<td>10,705 Medicare pts with confirmed AMI from CA non-federal acute care hospital</td>
<td>x x x x x x</td>
<td>x x x x x x</td>
<td>Strong (admin)</td>
<td></td>
</tr>
<tr>
<td>Franks et al.</td>
<td>1993</td>
<td>226,634 Medicare pts discharged with diagnosis of AMI</td>
<td>x x x x x x</td>
<td>x x x x x x</td>
<td>Strong (admin)</td>
<td></td>
</tr>
<tr>
<td>Gatsonis et al.</td>
<td>1995</td>
<td>218,427 Medicare patients with “fresh” AMI</td>
<td>x x x x x x</td>
<td>x x x x x x</td>
<td>Strong (admin)</td>
<td></td>
</tr>
<tr>
<td>Giacomini</td>
<td>1996</td>
<td>66,084 PTCA recipients and 52,401 CABG recipients from all CA hospitals, 1989-1990</td>
<td>x x x x x x</td>
<td>x x x x x x</td>
<td>Strong (admin)</td>
<td></td>
</tr>
<tr>
<td>Giles et al.</td>
<td>1995</td>
<td>10,348 pts discharged from hospital with primary diagnosis of AMI</td>
<td>x x x x x x</td>
<td>x x x x x x</td>
<td>Strong (admin)</td>
<td></td>
</tr>
<tr>
<td>Gillam et al.</td>
<td>1997</td>
<td>11,406 with no history of CHD</td>
<td>x x x x x x</td>
<td>x x x x x x</td>
<td>Strong (admin)</td>
<td></td>
</tr>
<tr>
<td>Gillam et al.</td>
<td>1997</td>
<td>Greater than 400 hospitals from 50 states with at least a 6 bed facility</td>
<td>x x x x x x</td>
<td>x x x x x x</td>
<td>Strong (admin)</td>
<td></td>
</tr>
<tr>
<td>Gittelsohn et al.</td>
<td>1991</td>
<td>MD pts admitted to acute care hospitals</td>
<td>x x x x x x</td>
<td>x x x x x x</td>
<td>Strong (admin)</td>
<td></td>
</tr>
<tr>
<td>Goff et al.</td>
<td>1994</td>
<td>1,228 Texas county pts admitted for definite/possible MI, PTCA or aortocoronary bypass surgery</td>
<td>x x x x x x</td>
<td>x x x x x x</td>
<td>Strong (admin)</td>
<td></td>
</tr>
<tr>
<td>Goff et al.</td>
<td>1995</td>
<td>1,199 pts hospitalized for MI</td>
<td>x x x x x x</td>
<td>x x x x x x</td>
<td>Strong (admin)</td>
<td></td>
</tr>
<tr>
<td>Goldberg et al.</td>
<td>1992</td>
<td>Medicare pts with ICD-9 Classification</td>
<td>x x x x x x</td>
<td>x x x x x x</td>
<td>Strong (admin)</td>
<td></td>
</tr>
</tbody>
</table>
At-A-Glance Findings of All Studies

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Description</th>
<th>Study population</th>
<th>Key Variables Assessed</th>
<th>Study Design</th>
<th>Did Study Find A Racial/Ethnic Difference in Rates?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gornick et al.</td>
<td>1996</td>
<td>26.3 million Medicare pts</td>
<td>x x</td>
<td></td>
<td></td>
<td>Strong (admin)</td>
</tr>
<tr>
<td>Gregory et al.</td>
<td>1999</td>
<td>13,690 pts in NJ with a primary diagnosis of AMI</td>
<td>x x</td>
<td>x x x</td>
<td></td>
<td>Strong (admin)</td>
</tr>
<tr>
<td>Griffiths et al.</td>
<td>1999</td>
<td>46 female pts with MI at tertiary care facility in NC</td>
<td>x x</td>
<td></td>
<td></td>
<td>Less strong (clinical)</td>
</tr>
<tr>
<td>Hannan et al.</td>
<td>1991</td>
<td>61,849 pts hospitalized with CAD in NY</td>
<td>x x</td>
<td>x x x x</td>
<td></td>
<td>Strong (admin)</td>
</tr>
<tr>
<td>Hannan et al.</td>
<td>1999</td>
<td>1,261 postangiography pts in 8 NY hospitals</td>
<td>x x x</td>
<td>x x</td>
<td></td>
<td>Strong (clinical)</td>
</tr>
<tr>
<td>Herholz et al.</td>
<td>1996</td>
<td>962 pts hospitalized for definite or possible MI for CHD</td>
<td>x x</td>
<td></td>
<td></td>
<td>Less strong (clinical)</td>
</tr>
<tr>
<td>Johnson et al.</td>
<td>1993</td>
<td>3,031 pts with chest pain at ED not due to local trauma or abnormalities at 2 hospitals (OH, MA)</td>
<td>x x</td>
<td></td>
<td></td>
<td>Less strong (clinical)</td>
</tr>
<tr>
<td>Laouri et al. [a]</td>
<td>1997</td>
<td>352 pts at 4 teaching hospitals (3 private, 1 public) who had a positive stress test and met criteria for angiography</td>
<td>x x x x</td>
<td>x</td>
<td></td>
<td>Strong (clinical)</td>
</tr>
<tr>
<td>Laouri et al. [b]</td>
<td>1997</td>
<td>671 LA. pts post-angiography (4 private, 2 public)</td>
<td>x x</td>
<td></td>
<td></td>
<td>Strong (clinical)</td>
</tr>
<tr>
<td>Leape et al.</td>
<td>1999</td>
<td>631 NY post-coronary angiography pts who met RAND criteria</td>
<td>x x x</td>
<td>x x x x</td>
<td></td>
<td>Strong (clinical)</td>
</tr>
<tr>
<td>Manhapra et al.</td>
<td>2000</td>
<td>498 pts with first MI</td>
<td>x x</td>
<td></td>
<td></td>
<td>Less strong (clinical)</td>
</tr>
<tr>
<td>Marks et al.</td>
<td>2000</td>
<td>4,279 pts undergoing coronary interventions in the NACI registry</td>
<td>x x</td>
<td></td>
<td></td>
<td>Less strong (clinical)</td>
</tr>
<tr>
<td>Maynard et al.</td>
<td>1986</td>
<td>13,307 pts without previous surgery who were candidates for bypass surgery after undergoing angiography in CASS</td>
<td>x x</td>
<td></td>
<td></td>
<td>Strong (clinical)</td>
</tr>
<tr>
<td>Maynard et al.</td>
<td>1991</td>
<td>12,534 pts with a discharge diagnosis of AMI that presented with complaints of chest pain in 19 hospitals in WA</td>
<td>x x</td>
<td></td>
<td></td>
<td>Less strong (clinical)</td>
</tr>
<tr>
<td>Maynard et al.</td>
<td>1997</td>
<td>11,254 pts with a discharge diagnosis of AMI from 19 hospitals in one county in WA</td>
<td>x x</td>
<td>x x x x</td>
<td></td>
<td>Strong (clinical)</td>
</tr>
<tr>
<td>McBean et al.</td>
<td>1994</td>
<td>Medicare pts with hospitalization for PTCA, CABG, or diagnosis of IHD</td>
<td>x x</td>
<td></td>
<td></td>
<td>Less strong (admin)</td>
</tr>
</tbody>
</table>
APPENDIX A

At-A-Glance Findings of All Studies

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Description</th>
<th>W</th>
<th>AA</th>
<th>L</th>
<th>A</th>
<th>NA</th>
<th>SG</th>
<th>Insurance</th>
<th>SES</th>
<th>Health Status</th>
<th>Disease Rating</th>
<th>Did Study Find A Racial/Ethnic Difference in Rates?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mickelson et al.</td>
<td>1997</td>
<td>1,703 pts in a VAMC in TX with MI and chest pain, or shortness of breath</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strong (clinical)</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>preceding ECG abnormalities</td>
<td></td>
<td>Yes Yes</td>
</tr>
<tr>
<td>Mirvis et al.</td>
<td>1994</td>
<td>30,100 pts with CAD and 1,135 pts with valvular disease discharged from</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strong (admin)</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>172 VAMC</td>
<td></td>
</tr>
<tr>
<td>Ness and Aronow</td>
<td>1999</td>
<td>1,802 pts at an academic primary care outpatient geriatric practice in NY,</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Less (non-clinical)</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>April 1998 – December 1998</td>
<td></td>
</tr>
<tr>
<td>Oberman and Cutter</td>
<td>1984</td>
<td>6,594 consecutive pts who underwent arteriography or CABG at university</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strong (clinical)</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hospital in AL</td>
<td></td>
</tr>
<tr>
<td>Oka et al.</td>
<td>1996</td>
<td>3,016 hospitalized pts. with discharge for definite or possible MI, incident</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Less (strong)</td>
<td>No Yes No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or recurrent infarction during 1986 – 1992</td>
<td></td>
</tr>
<tr>
<td>Okelo et al.</td>
<td>2001</td>
<td>882 Veteran pts with one or more CC, between 1993 and 1995</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strong (clinical)</td>
<td>No Yes</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Park et al.</td>
<td>1997</td>
<td>316 consecutive patients who underwent orthotopic heart transplantation,</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Less (strong)</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>March 1983 – July 1993</td>
<td></td>
</tr>
<tr>
<td>Peniston et al.</td>
<td>2000</td>
<td>1,460 male veterans post-CC, November 1986 – November 1992</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strong (clinical)</td>
<td>No</td>
</tr>
<tr>
<td>Peterson et al.</td>
<td>1994</td>
<td>33,641 male veterans with a primary or secondary diagnosis of AMI</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strong (admin)</td>
<td>Yes Yes Yes Yes</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Peterson et al.</td>
<td>1997</td>
<td>12,402 suspected heart diseased pts with documented CHD on CC</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strong (clinical)</td>
<td>No Yes Yes Yes</td>
</tr>
<tr>
<td>Philbin and DiSalvo</td>
<td>1998</td>
<td>45,894 CHF patients with AMI</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Less (strong)</td>
<td>Yes No Yes</td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td></td>
</tr>
<tr>
<td>Philbin et al.</td>
<td>2000</td>
<td>28,698 patients with AMI</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strong (admin)</td>
<td>Yes Yes Yes Yes</td>
</tr>
<tr>
<td>Philbin et al.</td>
<td>2001</td>
<td>11,579 patients with primary diagnosis of AMI</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strong (admin)</td>
<td>Yes Yes Yes Yes</td>
</tr>
<tr>
<td>Ramsey et al.</td>
<td>1997</td>
<td>1,228 pts hospitalized for definite or possible MI in one county in TX</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Less (strong)</td>
<td>No Yes No</td>
</tr>
<tr>
<td>Rathore et al.</td>
<td>2000</td>
<td>169,079 Medicare pts >65 years of age with</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Strong (clinical)</td>
<td>Yes Yes</td>
</tr>
</tbody>
</table>

Racial/Ethnic Differences in Cardiac Care: The Weight of the Evidence
At-A-Glance Findings of All Studies

<table>
<thead>
<tr>
<th>Study Design</th>
<th>Key Variables Assessed</th>
<th>Study Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study population</td>
<td>W</td>
<td>AA</td>
</tr>
<tr>
<td>Description</td>
<td>Study population</td>
<td>W</td>
</tr>
<tr>
<td>Scirica et al. 1999</td>
<td>2,948 pts with unstable angina</td>
<td>x</td>
</tr>
<tr>
<td>Sedlis et al. 1997</td>
<td>1,796 veterans post-CC</td>
<td>x</td>
</tr>
<tr>
<td>Stone et al. 1996</td>
<td>3,318 pts with non-Q-wave MI</td>
<td>x</td>
</tr>
<tr>
<td>Summers et al. 2000</td>
<td>166 pts with enzyme documented myocardial infarction</td>
<td>x</td>
</tr>
<tr>
<td>Syed et al. 2000</td>
<td>395 pts with a first MI</td>
<td>x</td>
</tr>
<tr>
<td>Taylor et al. 1997</td>
<td>1,141 pts from 125 U.S. military care facilities with diagnosis of AMI</td>
<td>x</td>
</tr>
<tr>
<td>Taylor et al. 1998</td>
<td>275,046 pts with AMI</td>
<td>x</td>
</tr>
<tr>
<td>Tunis et al. 1993</td>
<td>7,080 procedures likely related to peripheral arterial disease among Maryland pts aged 25 or older</td>
<td>x</td>
</tr>
<tr>
<td>Udvahlhegyi et al. 1992</td>
<td>218,427 Medicare patients with AMI</td>
<td>x</td>
</tr>
<tr>
<td>Watson et al. 2001</td>
<td>381 pts with AMI in 1 of 5 mid-Michigan community hospitals</td>
<td>x</td>
</tr>
<tr>
<td>Weitzman et al. 1997</td>
<td>5,462 hospitalized pts with MI aged 35-74 in NC, MS, MD and MN</td>
<td>x</td>
</tr>
<tr>
<td>Wenneker and Epstein 1989</td>
<td>109,575 pts age 30-89 admitted to MA hospitals for circulatory disease or chest pain</td>
<td>x</td>
</tr>
<tr>
<td>Whittle et al. 1993</td>
<td>4,283 male veterans over 30 years old with a primary diagnosis of cardiovascular disease or chest pain</td>
<td>x</td>
</tr>
<tr>
<td>Wolinsky et al. 1997</td>
<td>7,286 Medicare pts age 70+ hospitalized for CHF</td>
<td>x</td>
</tr>
</tbody>
</table>

KEY:

- **a** To interpret ratings, see Criteria for Evaluating the Strength of Individual Studies, page 4.
- **b** Does a difference exist for at least one of the racial/ethnic minority groups in at least one of the procedures or treatments?

YES = Difference found; at least one racial/ethnic minority group less likely than whites to have procedure or treatment (in the case of CHF, higher rates of hospitalizations indicate lower access to appropriate care).

YES† = Difference found; racial/ethnic minority group more likely than whites to have procedure or treatment (in the case of CHF, lower rates of hospitalizations indicate higher access to appropriate care).

NO = No difference found; racial/ethnic minority group as likely as whites to have procedure or treatment.
This report is one component of an initiative to raise physician awareness about racial and ethnic disparities in medical care. The initial focus is on cardiac care because heart disease is the leading cause of death among racial/ethnic groups in the United States and because there is substantial research on disparities in this area. Since the completion of this report, the Robert Wood Johnson Foundation has joined The Henry J. Kaiser Family Foundation in this project, making it a joint effort of the two Foundations. A number of national organizations have joined both Foundations in this effort, including:

Partners
American College of Cardiology Foundation
American Heart Association
Association of Black Cardiologists, Inc.

Co-sponsors
American Academy of Family Physicians
American College of Physicians/American Society of Internal Medicine
American Medical Association
American Medical Women’s Association
American Public Health Association
Association of Academic Health Centers
Association of American Medical Colleges
National Hispanic Medical Association
National Medical Association
Washington Business Group on Health

As of August 31, 2002